博客
关于我
聚类分析笔记-K均值matlab算法(一)
阅读量:221 次
发布时间:2019-02-28

本文共 1440 字,大约阅读时间需要 4 分钟。

一:聚类分析的动态聚类算法

聚类分析是一种无监督学习方法,用于将数据点按一定规则分组。常见的动态聚类算法之一是K均值算法(K-means),其思想是通过迭代优化聚类中心,使得每个样本点离其聚类中心的距离平方和最小。

K均值算法的思想

  • 初始聚类中心:随机选取K个样本作为初始聚类中心。
  • 迭代优化
    • 对每个样本点计算其到各个聚类中心的距离。
    • 根据距离将样本点分配到最近的聚类中心。
    • 计算每个聚类中心的新坐标(均值)。
    • 比较当前聚类中心与新聚类中心的差异,若收敛则终止,否则继续迭代。
  • 收敛判断:若聚类中心向量变化小,视为收敛。
  • K均值算法的常用方法

    • K均值算法:适用于已知类别数的情况,效果较好。
    • ISODATA算法(迭代自组织数据分析算法):动态调整类别数,适合未知类别数的情况,常用Matlab实现。

    K均值算法的优点与注意事项

    • 优点
      • 简单易实现。
      • 适用于已知类别数的聚类问题。
      • 计算结果具有几何意义。
    • 注意事项
      • 初始聚类中心的选择会影响结果,需合理选择。
      • 对于高维数据,计算量较大,需注意性能优化。
      • 数据的顺序可能影响聚类结果。

    二:Matlab程序实现示例

    以下是基于K均值算法的Matlab程序实现,用于两类聚类问题:

    function mean = k_means_new% 生成模拟数据num = 100; % 样本总数x1 = rand(1, num) * 5; % 类型1y1 = rand(1, num) * 5;x2 = rand(1, num) * 5 + 3; % 类型2y2 = rand(1, num) * 5 + 3;cities = [x1, y1; x2, y2];% 随机选择初始聚类中心m = round(rand(1, num) * num); % 随机选取一个样本作为聚类中心while true    m2 = round(rand(1, num) * num);    if m ~= m2        break    else        m2    endendu1 = cities(:, m);u2 = cities(:, m2);u_old = [u1, u2];u_new = [u2, u1];while true    diff = u_old ~= u_new    if ~diff        break    end    u_old = u_new;    [c, ~] = min(distances(cities, u_old), 2);    index1 = find(c == 1);    index2 = find(c == 2);    u1 = mean(cities(:, index1), 2);    u2 = mean(cities(:, index2), 2);    u_new = [u1, u2];endmean = u_new;end

    三:实验结果与分析

    通过实验验证,K均值算法在已知类别数的情况下表现良好。随着初始样本数量的增加,聚类精度有所提升。以下是不同初始点数量下的聚类效果对比:

    • 10个初始点:聚类效果较为分散。
    • 20个初始点:聚类效果有所改善,分类准确率提高。
    • 50个初始点:聚类效果更为稳定,分类准确率显著提升。
    • 100个初始点:聚类效果最为理想,分类准确率接近100%。

    实验结果表明,K均值算法在已知类别数的情况下表现出色,适合用于分类问题。

    转载地址:http://sowi.baihongyu.com/

    你可能感兴趣的文章
    Netty工作笔记0060---Tcp长连接和短连接_Http长连接和短连接_UDP长连接和短连接
    查看>>
    Netty工作笔记0063---WebSocket长连接开发2
    查看>>
    Netty工作笔记0070---Protobuf使用案例Codec使用
    查看>>
    Netty工作笔记0077---handler链调用机制实例4
    查看>>
    Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
    查看>>
    Netty工作笔记0085---TCP粘包拆包内容梳理
    查看>>
    Netty常用组件一
    查看>>
    Netty常见组件二
    查看>>
    netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
    查看>>
    Netty心跳检测机制
    查看>>
    Netty核心模块组件
    查看>>
    Netty框架内的宝藏:ByteBuf
    查看>>
    Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
    查看>>
    Netty源码—2.Reactor线程模型一
    查看>>
    Netty源码—3.Reactor线程模型三
    查看>>
    Netty源码—4.客户端接入流程一
    查看>>
    Netty源码—4.客户端接入流程二
    查看>>
    Netty源码—5.Pipeline和Handler一
    查看>>
    Netty源码—5.Pipeline和Handler二
    查看>>
    Netty源码—6.ByteBuf原理一
    查看>>